SYLLABUS

for

Choice Based Credit System

(CBCS)

On the basis of

Outcome Based Education

(OBE)

MASTER OF COMPUTER

APPLICATION

PATNA WOMEN'S COLLEGE PATNA UNIVERSITY

3rd Cycle NAAC Accredited at 'A' Grade with CGPA 3.58/4 "College with Potential for Excellence" (CPE) Status Accorded by UGC

MCA CBCS Syllabus

Note: 1 credit = 15 hours

- 1. Theory paper: 5 credits each
- 2. Practical paper: 3 credits / 2credits

Core Courses (5 credits for theory papers / 3credits for lab papers)

Core Course: A course, which should compulsorily be studied by a candidate as a core requirement is termed as a Core course.

Semester I

- 1. Software Engineering MCA CS1T01
- 2. Advanced Database Management System MCA CS1T02
- 3. Design & Analysis of Algorithm- MCA CS1T03
- 4. Computer Networks and Security- MCA CS1T04
- 5. Lab on Responsive Web Designing -MCA CS1L05

Semester II

- 6. Object Oriented Analysis and Designing MCA CS2T06
- 7. Distributed Computing- MCA CS2T07
- 8. Mini Project I(Lab)- MCA CS2L08

Semester III

- 9. Advanced Web Designingusing J2EE- MCA CS3T09
- 10. Cloud Computing-MCA CS3T10
- 11. Data & Web Mining- MCA CS3T11
- 12. Mini Project II(Lab)- MCA CS3L12

Semester IV

13. Internship-MCA CS4P13

14. Project- MCA CS4P14

Generic /Interdisciplinary Papers (5 credits each)

Generic/Interdisciplinary Papers : A course generally from an unrelated discipline/subject, with an intention to seek exposure is called a Generic / Interdisciplinary course.

Semester I

1. Statistical and Numerical Computing - MCA GI1T1

Semester II

2. Optimization Techniques - MCA GI2T2

Discipline Specific Elective (DSE) (5 credits each)

Discipline Specific Elective (DSE) Course: Elective courses may be offered by the main discipline/subject of study is referred to as Discipline Specific Elective. These courses may be chosen from a pool of discipline specific specialized courses.

Semester II

Elective MCA DSE2T1

- 1. Compiler Design
- 2. Digital Image Processing & Multimedia
- 3. Computer Graphics

Elective MCA DSE2T2

- 1. Introduction to Machine Learning
- 2. Artificial Intelligence
- 3. Soft Computing

Semester III

Elective MCA DSE3T3

- 1. MIS and E-Commerce
- 2. Enterprise Resource Management
- 3. Principles of Management & Organizational Behaviour

Elective MCA DSE3T4

- 1. Parallel Computing
- 2. Wireless Network
- 3. Big Data Analytics

Skill Enhancement Courses (SEC)(2Credits)

Skill Enhancement Courses (SEC): These courses are designed to provide value-based and/or skill-based knowledge.

Semester I

- 1. Lab Based on Statistical Package- MCA SE1L01
- 2. Training on Computer Networking **MCA SE1L02**

Semester II

- 3. Technical Presentation & Report Writing- MCA SE2L03
- 4. Personality Development & Inter Religious Values- MCA SE2L04

Semester III

- 5. MOOCs- MCA SE3L05
- 6. Seminar MCA SE3L06

MCA CBCS Syllabus

Se	Core Course (14)	Generic	Discipline	Skill Enhancement
m.	5 Credits each for	Interdisciplinary	Specific	Course(6)
	theory papers (9)	(2)	Elective	02 Credits each
	3 credits each for Lab	<u>5 Credits each</u>	Papers (4)	
	<u>papers (3)</u>		<u>5 Credits</u>	
	12 Credits each for		<u>each</u>	
	OJT project/internship			
	papers (2)			
I	MCA CS1T01:			MCA SE1L01:
	Software Engineering			Lab Based on
	MCA CS1T02:	MCA GI1T1:		Statistical Package
	Advanced Database	Statistical and		
	Management System	Numerical		
	MCA CS1T03:	Computing		MCA SE1L02:
	Design & Analysis of			Training on
	Algorithm			Computer
	MCA CS1T04:			Networking
	Computer Networks &			
	Security			
	MCA CS1L05:			
	Lab on Responsive Web			
	Designing			
II	MCA CS2T06:	MCA GI2T2:	MCA	MCA SE2L03:
	Object Oriented Analysis	Optimization	DSE2T1:	Technical
	and Designing	Techniques	Elective-1	Presentation &
				Report Writing
			MCA	
	MCA CS2T07:		DSE2T2:	
	Distributed Computing		Elective-2	

	MCA CS2L08:		MCA SE2L04:
	Mini Project I (Lab)		Personality
			Development & Inter
			Religious Values
III	MCA CS3T09:	MCA	MCA SE3L05:
	Advanced Web Designing	DSE3T3:	MOOCs
	using J2EE	Elective-3	
	MCA CS3T10:		
	Cloud Computing	MCA	
	MCA CS3T11:	DSE3T4:	
	Data & Web Mining	Elective-4	MCA SE3L06:
			Seminar
	MCA CS3L12:		
	Mini Project II (Lab)		
IV	MCA CS4P13:		
	Internship		
	MCA CS4P14:		
	OJT Project		

Course Structure for MCA

<u>Semester -I</u>	Semester -II
MCA CS1T01:	MCACS2T06:
Software Engineering	Object Oriented Analysis and Designing
MCA CS1T02:	MCA CS2T07:
Advanced Database Management System	Distributed Computing
MCA CS1T03:	MCA CS2L08:
Design & Analysis of Algorithm	Mini Project I (Lab)
MCA CS1T04 :	MCA GI2T2:

Computer Networks& Security	Optimization Techniques
MCA CS1L05 :	MCA DSE2T1:
Lab on Responsive Web Designing	Elective-1
MCA GI1T1 :	MCA DSE2T2:
Statistical and Numerical Computing	Elective-2
MCA SE1L01 :	MCA SE2L03:
Lab Based on Statistical Package	Technical Presentation & Report Writing
MCA SE1L02 :	MCA SE2L04:
Training on Computer Networking	Personality Development & Inter Religious
	Values
Semester -III	Semester -IV
MCA CS3T09:	MCA CS4P13:
Advanced Web Designing using J2EE	Internship
MCA CS3T10:	MCA CS4P14:
Cloud Computing	OJT Project
Cloud Computing MCA CS3T11:	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12:	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab)	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab) MCA DSE3T3:	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab) MCA DSE3T3: Elective-3	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab) MCA DSE3T3: Elective-3 MCA DSE3T4:	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab) MCA DSE3T3: Elective-3 MCA DSE3T4: Elective-4	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab) MCA DSE3T3: Elective-3 MCA DSE3T4: Elective-4 MCA SE3L05:	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab) MCA DSE3T3: Elective-3 MCA DSE3T4: Elective-4 MCA SE3L05: MOOCs	OJT Project
Cloud Computing MCA CS3T11: Data & Web Mining MCA CS3L12: Mini Project II (Lab) MCA DSE3T3: Elective-3 MCA DSE3T4: Elective-4 MCA SE3L05: MOOCs MCA SE3L06:	OJT Project

Sama		Theor	Theor Practic	Project/	Total
Seine	Course	THEOI V	al	Internshi	Credi
5161		у	ai	р	ts
	I. <u>Core Course – Computer Sci</u>	ence	L		
	<u>(12 Papers)</u>				
	1. Software Engineering	5	-	-	5
	2. Advanced Database	5	-	-	5
	Management System				
	3. Design & Analysis of	5	-	-	5
I	Algorithm				
	4. Computer Networks &	5	-	-	5
	Security				
	5. Lab on Responsive Web	-	3	-	3
	Designing				
	6. Object Oriented Analysis	5	-	-	5
П	and Designing				
	7. Distributed Computing	5	-	-	5
	8. Mini Project I (Lab)		3	-	3
	9. Advanced Web Designing	5	-	-	5
	using J2EE				
Ш	10. Cloud Computing	5	-	-	5
	11.Data & Web Mining	5	-	-	5
	12. Mini Project II (Lab)	-	3	-	3
1.7	13. Internship		-	12	12
IV	14.OJT Project		-	24	24
			l		
	II. Generic / Interdisciplinary Papers(2	Papers)	- 05 cre	<u>dits each</u>	
I	1. Statistical and Numerical	5	-	-	5
	Computing				
II	2. Optimization Techniques	5	-	-	5
			·		

	II. Discipline Specific Elective	Papers (4	1 Papers)	(5 credits e	each)
II	1. Elective-1	5	-	-	5
	2. Elective-2	5	-	-	5
	3. Elective-3	5	-	-	5
	4. Elective-4	5	-	-	5
	IV. Skill Enhancement Course (SEC)	–(6 Pape	rs) 02 cree	dits each	
1	1. Lab Based on Statistical	-	2	-	2
•	Package				
	2. Training on Computer	-	2		2
	Networking				
п	3. Technical Presentation &	-	2	-	2
	Report Writing				
	4. Personality Development & Inter	-	2	-	2
	Religious Values				
	5. MOOCs	-	2	-	2
	6. Seminar	-	2	-	2
	TOTAL				132

MCA PROGRAM OUTCOMES (POS)

Upon completion of the programme, the students will attain the ability to:

- PO1: Apply knowledge of Computing fundamentals, Computing specialization, Mathematics, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.
- **PO2:** Identify, formulate, research literature, and solve complex Computing problems reaching substantiated conclusions using fundamental principles of Mathematics, Computing sciences, and relevant domain disciplines.
- **PO3:** Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- **PO4:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- **PO5:** Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
- **PO6:** Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practice.

MCA PROGRAM OBJECTIVES (PO)

Upon completion of the programme, the students will attain the ability to:

- **PSO1:** Create systems through software development to solve problems in Industry domain areas.
- **PSO2:** Contribute to societal growth through research in their chosen field.
- **PSO3:** Perform both as an individual and in a team through good analytical, design and implementation skills.
- **PSO4:** Possess professional development through continuous learning.

- PSO5: Comprehend, explore and build up computer programs in the areas allied to Algorithms, System Software, Multimedia, Web Design and Big Data Analytics for efficient design of computer-based systems of varying complexity.
- **PSO6:** Pursue careers in IT industry/ consultancy/ research and development, teaching and allied areas related to computer science.

MCA Details of CBCS Syllabus

<u>Semester – I</u> Course Code: MCA CS1T01 Course Name: Software Engineering

Course Objectives:

- To gain knowledge of basic SW engineering methods and their appropriate application.
- To understand software testing approaches such as unit testing and integration testing.
- To produce efficient, reliable, robust and cost-effective software solutions.
- Students will be able to perform independent research and analysis.
- Students will be able to analyze, design, verify, validate, implement, apply, and maintain software systems.

Course Outcomes:

- **CO1:** Explain a process model for a software project Development.
- CO2: Prepare the SRS, Design document, Project plan of a given software system

- **CO3:** Apply Project Management and Requirement analysis, Principles to S/W project development.
- CO4: Analyze the cost estimate and problem complexity using various estimation techniques
- **CO5:** Generate test cases using the techniques involved in selecting: Analyze

(a) White Box testing (b) Block Box testing

CO6: Explain the advantages of configuration management and risk management activities.

MCA (MCA CS1T01: Software Engineering			
Р	PWC (5 credits – 4 theory + 1 Assignment)			
Unit	Topics to be covered	No. of		
		hours		
1	Introduction to Software Engineering: Characteristics of	15		
	software -The Changing Nature of software – Legacy Software			
	and Software myths – A Generic view of process – Software			
	Engineering: A layered Technology and A process framework -			
	Capability Maturity Model Integration - Process Models -			
	Prescriptive models -Specialized Process Models and The Unified			
	Process -An agile view of Process.			
2	Requirements Analysis and Design : System Engineering -	15		
	Requirements Engineering – Requirements Engineering Tasks -			
	Initiating the Requirements Engineering Process-Eliciting			
	Requirements – Building the Analysis Model - Analysis Modeling			
	Approaches – Data Modeling Concepts and Scenario based			
	Modeling and Flow Oriented Modeling- Design Engineering -			
	Software Design Concepts- The Design Model			
3	Testing Strategies and Tactics : Introduction to Testing -	15		
	Definition of Testing Terminologies-Testing Strategies for			
	Conventional Software-Validation Testing - System Testing -			
	Debugging Process-Testing Tactics – White Box Testing - Black			

	Total	75
5	Assignment	15
	Reengineering - Reverse Engineering	
	Management and the SCM Repository -Business Process	
	Statistical Quality Assurance -The Software Configuration	
	Assurance -Software Reviews and Formal Technical Reviews -	
	Monitoring and Management -Quality Concepts -Software Quality	
	and Risk Projection – Risk refinement and Risk Mitigation,	
	Proactive Risk Strategies – Software Risks – Risk Identification	
4	Quality, Change and Risk Management: Reactive and	15
	Scheduling	
	Project Scheduling Concepts – Timeline charts and Tracking the	
	Decomposition Techniques - Empirical Estimation Models -	
	Estimation - The Project Planning Process – Resources -	
	Process and the Project -Metrics for Process and Projects-	
	Management Spectrum - The People and the Product- The	
	Management, Estimation and Scheduling : Project	
	Box Testing - Testing for Specialized Environments. Project	

- 1. Roger, S. Pressman (2004), *Software Engineering: A Practitioner Approach*, McGraw Hill International Edition, Sixth Edition, New Delhi (For 1 to 5 units).
- 2. Waman, S Jawadekar (2004), *Software Engineering: Principles and Practice*, McGraw Hill Education Pvt. Limited, New Delhi.
- 3. RohitKhurana (2011), *Software Engineering-Principles and Practices*, Vikas Publishing House Pvt. Ltd., Second Edition, New Delhi.
- 4. Carlo Ghezzi, Mehdi Jazayari, Dino Mandrioli (1991), Fundamentals of Software Engineering, Prentice Hall of India, New Delhi.

Semester -I

Course Code: MCA CS1T02

Course Name Advanced Database Management System

Course Objectives:

- Learn about Database Management System and its advantage over the traditional file system, the DBMS environment, various data models and the steps involved in database design
- Learn and practice data modeling using the entity-relationship and developing database designs.
- It also covers integrity constraints and deals with constraints violation

Course Outcomes:

- **CO1:** Describe the fundamental elements of relational database management systems.
- **CO2:** Explain the basic concept of data modelling using the entity-relationship and developing database designs.
- **CO3:** Convert E-R models to relational tables, populate relational database and formulate SQL queries on data.
- **CO4:** Use database techniques such as SQL & PL/SQL
- **CO5:** Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database.
- **CO6:** Apply advanced database Programming concepts of varying complexities

<u>Semester – I</u>

MCA CS	MCA CS1T02:Advanced Database Management System				
PWC(5 credits – 4 theory + 1 Assignment)					
Unit	Topics to be covered	No. of hours			
1	Introduction: Database & Database Users, Characteristics of	15			
	the Database Systems. Concepts & Architecture, Date				
	Models: hierarchical, relational and network, Schemas &				
	Instances, DBMS Architecture & Data Independence Data				
	Modelling using the Entity-Relationship Approach, Attributes,				
	Tuple, Domain Constraints, key constraints, Integrity				
	constraints, Database Design , Conceptual Design ERD				
	Logical Design Schema, subschema, Relational Data Model &				
	Relational Algebra (Union, Intersection, Cartesian product,				
	Difference), Relational Model Concepts, Relation Operation(
	SELECT, PROJECT, JOINS DIVISION)				
2	Structured Query Language: DBMS tools: SQL - A	15			
	Relational Database Language (DDL, DML, DLC), View &				
	Queries in SQL,				
	DBMS Applications: ORACLE/a Relational Database				
	Management Systems ORACLE/INGRES, PL/SQL, Case				
	studies on ER diagram, Normalization and SQL				
3	Relational Data Base Design: Function Dependencies &	15			
	Normalization for Relational Databases, Data Redundancy,				
	Functional Dependencies, Normal forms based on primary				
	keys (INF, 2NF, 3NF & BCNF), Boyce-Codd Normal Form.				
	Lossless Join & Dependency perservingdecomoposition,				
	Physical Design: (File Organization, Heap Organization				

	Total	75
5	Assignment	15
	,Time stamp ordering, Granularity of Data items, Database Security & Recovery Techniques ,Recovery concepts, Database backup and recovery from catastrophic failures	
4	Database Transaction Management:Concurrency ControlTechniques & Recovery Techniques:Locking Techniques	15
	Sequential Organization, Index File, ISAM, VSAM), Query Processing and Optimization	

- 1. Date C.J., Kannan A., Swamynathan S., Introduction to Database System
- 2. GehaniNarain&AnnamalaiMelliyal, The Database Book Principles & Practice using the Oracle Database System
- 3. Byross, SQL/PL/SQL~Prog. Language of Oracle, BPB Pub

Semester - I

Course Code: MCA CS1T03

Course Name Design and Analysis of Algorithm

Course Objectives:

- Analyze the asymptotic performance of algorithms.
- Write rigorous correctness proofs for algorithms.
- Demonstrate a familiarity with major algorithms and data structures.
- Apply important algorithmic design paradigms and methods of analysis.

• Synthesize efficient algorithms in common engineering design situations.

Course Outcomes:

- **CO1:** Analyze worst-case running times of algorithms using asymptotic analysis.
- **CO2:** Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize Divide-and-conquer algorithms. Derive and solve recurrences describing the performance of divide-and-conquer algorithms.
- **CO3:** Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize dynamic-programming algorithms, and analyze them.
- **CO4:** Describe the greedy paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize greedy algorithms, and analyze them.
- **CO5:** Explain the major graph algorithms and their analyses. Employ graphs to model engineering problems, when appropriate. Synthesize new graph algorithms and algorithms that employ graph computations as key components, and analyze them.
- **CO6:** Explain the different ways to analyze randomized algorithms (expected running time, probability of error). Recite algorithms that employ randomization. Explain the difference between a randomized algorithm and an algorithm with probabilistic inputs

MCA CS1T03:Design & Analysis of Algorithm					
F	PWC (5 credits – 4 theory + 1 Assignment)				
Unit		Topics to be covered	No. of		
			hours		

1	Basics of Algorithms and Mathematics: What is an algorithm?	15
	Mathematics for AlgorithmAnalysis of Algorithm: The efficient	
	algorithm, Average, Best and worst case Asymptotic Notations,	
	Analyzing control statement, Loop invariant and the correctness	
	of the algorithm, Sorting Algorithms and analysis: Bubble sort,	
	Selection sort, Insertion sort, Shell sort Heap sort, Sorting in	
	linear time: Bucket sort, Radix sort and Counting sort	
2	Divide and Conquer Algorithm: Introduction, Recurrence and	15
	different methods to solve recurrence Knapsack Problem DP	
	solution, Activity selection problem DP solution, All pairs shortest	
	paths, Traveling salesman problem. Dynamic Programming:	
	Introduction, The Principle of Optimality, Problem Solving using	
	Dynamic Programming, Knapsack Problem DP solution, Activity	
	selection problem DP solution, All pairs shortest paths, Traveling	
	salesman problem, Merge Sort, Strassen's matrix multiplication.	
3	Greedy Algorithm :General Characteristics of greedy	15
	algorithms, Problem solving using , Greedy Algorithm -Activity	
	selection problem, Elements of Greedy Strategy, Minimum	
	Spanning trees (Kruskal's algorithm, Prim's algorithm), Graphs:	
	Shortest paths, The Knapsack Problem, Job Scheduling	
	Problem, Huffman code	
	Graphs: An introduction using graphs and games, Undirected	
	Graph, Directed Graph, Traversing Graphs, Depth First Search,	
	Breath First Search, Topological sort, Connected components,	
	Euler Tour, Minimum Spanning Tree, Kruskal's Algorithm, Prim's	
	Algorithm, Single Source Shortest Path. Backtracking and	
	Branch and Bound: Introduction, The Eight queens problem,	
	Knapsack problem, Travelling Salesman problem, Minimax	
	principle	

4	Randomized Algorithms and Amortized Analysis: Basics	15
	ideas of randomized Algorithms (Las Vegas and Monte Carlo	
	types), Simple examples (Randomized Quick sort and its	
	analysis, Min-Cut algorithm and its analysis), Amortized analysis	
	and its significance (Illustration through examples). Introduction	
	to NP-Completeness: The class P and NP, Polynomial	
	reduction, NP-Completeness Problem, NP-Hard Problems	
	Travelling Salesman problem, Hamiltonian problem,	
	Approximation algorithms.	
5	Assignment	15
	Total	75

- 1. Cormen, Thomas H., Charles E.,Leiserson, Ronald L. Rivest, andStein, Clifford, "Introduction to Algorithm",PHI
- 2. Aho, A.V., Hopcroft, J.E. and Ullman J.D., *"The Design and Analysis of Computer Algorithms"*, Pearson Education.
- 3. Harris Simen, Ross James, "Beginning Algorithms", Wiley India.
- 4. Johansonbaugh Richard, and Schaefer Marcus," Algorithms", Pearson
- 5. Baase, S., "Algorithms-Introduction to Design and Analysis", Pearson Education.
- 6. Wilf, H.S. "Algorithms and Complexity", PHI

Semester – I

Course Name: Computer Networks and Security

Course Objectives:

- To understand the basic concepts of data communication, layered models, protocols and inter- working between computer networks and switching components in telecommunication systems.
 - To know the existing protocols and modify if required
 - To understand the functioning of Frame Relay, ATM.
 - To know the cryptography, security, issues and challenges of computer N/W

Course Outcomes:

- CO1: Remember the techniques used in Data communication and types of transmission
- CO2: Understand the need for data link control, error control mechanism
- **CO3**: Apply various network layer techniques for designing subnets mask and routing addresses to fulfil networking requirements
- CO4: Analyse OSI, TCP/IP and their protocols.
- **CO5**: Evaluate issues of routing and congestion mechanism for independent and internetworking networks for wired and wireless link
- CO6: Create or design application layer protocol with routing in switched networks

MCA CS1T04 Computer Networks & Security

PWC(5 credits – 4 theory + 1 Assignment)

Unit	Topics to be covered	No. of hours
1	Data Communications, Data Networking and Data	15
	Transmission: Fourier analysis, Band limited signals, The	
	communication channel, Maximum data rate of a channel,	
	Electromagnetic spectrum, electromagnetic waves, frequency	
	and wave length, bandwidth, bandwidth and channel capacity,	
	Modulation, types of Modulation, Concepts and Terminology,	
	Analog and Digital Data Transmission, Transmission	
	Impairments, Channel Capacity	
	Signal Encoding Techniques: Digital Data, Digital Signals;	
	Digital Data, Analog Signals; Analog Data, Digital Signals;	
	Analog Data, Analog Signals	
	Digital Data Communication lechniques: Digital	
	communication, advantages of digital communication,	
	,Sampling Theory, Analog to digital conversion -Pulse Code	
	Modulation (PCM), Delta modulation (DM); encoding of digital	
	signals, Multiplexing and Modulation of Digital Signals, digital	
	(ESK) phase shift keying (DSK) quadrature emplitude	
	(FSK), phase shift keying (FSK), quadrature amplitude	
	differential phase shift keying (DPSK) clock recovery	
	probability of error & bit error rate trellis encoding	
	Asynchronous and Synchronous Transmission	
	Asynomonous and Cynomonous Transmission.	
2	Data Link Control Protocols: Need for Data Link Control,	15
	Service provided by the Data Link Layer, Frame Design	
	Consideration, Flow Control Mechanism, Types of Errors, Error	
	Detection, Error Correction, Line Configurations, Flow Control,	
	Error Control, High-Level Data Link Control (HDLC), , Data Link	
	Error Control Error Control in Stop-and-wait Mechanism &	

	Sliding Window Mechanism, Sequence numbering,	
	Piggybacking Acknowledgements. Mac layer and its different	
	protocols	
	Multiploying Circuit Switching and Backat	
	Switching Eroquency Division Multiplexing Synchronous	
	Time Division Multiplexing Statistical Time Division	
	Multiplexing Asymptotic Digital Subscriber Line	
	Multiplexing, Asymmetric Digital Subscriber Line,	
	Networks, Circuit Switching Concents, Soft switch Archite sture	
	Retworks, Circuit Switching Concepts, Soit Switch Architecture,	
	Packet-Switching Principles, Moderns	
3	FUNDAMENTALS AND MATHEMATICS OF	15
	CRYPTOGRAPHY	
	Overview - Classical Crypto Systems – Substitution Ciphers	
	-Transposition Ciphers - Stream and Block Ciphers -	
	Introduction to Number Theory – Congruences – Chinese	
	Remainder theorem – Modular Arithmetic - Modular	
	Exponentiation – Fermats and Eulers Theorem - Finite Fields	
	– GF(2n) Fields	
	ENCRYPTION TECHNIQUES :Data Encryption Standard –	
	Advanced Encryption Standard – Confidentiality using	
	Symmetric Encryption, Public-Key Cryptography and RSA -	
	Key Management - Diffie-Hellman Key Exchange – Elliptic	
	Curve Cryptography – Symmetric Key Distribution – Kerberos	
	- X.509 Authentication Service.	
	HASH FUNCTIONS AND SIGNATURES	
	Message Authentication and Hash Functions – Description of	
	MD Hash Family – Secure Hash Algorithms – SHA-512	
	Digital Signatures and Authentication Protocols – Digital	
	Signature Standard – Process - Services - Attacks on Digital	
	Signature - Digital Signature Schemes.	

4	NETWORK SECURITY	15
	Security at the application layer - E-Mail - Pretty Good Privacy	
	- S/MIME - Security at the transport layer - SSL Architecture -	
	Protocols – Message Formats - TLS – Security at the Network	
	Layer - IPSec – Two modes - Authentication Header (AH) –	
	Encapsulating Security Payload (ESP) - Security Policy -	
	Security Association – Internet Key Exchange.	
	SYSTEM SECURITY	
	Intruders – Intrusion Detection – Password Management –	
	Malwares and Related Threats – DOS Attacks - Distributed	
	Denial of Service Attacks - Firewalls - Firewall Types-	
	Configuration and Implementation - Demilitarized Zone -	
	Firewall Forensics -Services and Limitations - Intrusion	
	Prevention System.	
		45
5	Assignment	15
	Total	75

- 1. Forouzan, "Data Communication & Networking", TMH
- 2. Tannenbaum, "Computer Networks", PHI
- 3. Dordal Peter, L, (2018) "An Introduction to Computer Networks"
- 4. Bonaveture Olivier (2011) "Computer Networking: Principals, Protocols & Practice"
- 5. Stallings William, (2013), *"Cryptography And Network Security Principles and Practices"*, SixthEdition, Pearson Education.
- 6. ForouzanBehrouz A., Mukhopadhyay, Debdeep, (2010), "Cryptography and Network Security", Second Edition, Tata McGraw Hill.
- 7. KahateAtul,(2003), "Cryptography and Network Security", Tata McGraw Hill.
- 8. Kizza Joseph Migga, (2010), *"A Guide to Computer Network Security"*, Springer International Edition.

Semester – I

Course Name: Lab on Responsive Web Designing

Course Objectives:

- To learn how to make your **web** page **designs** adapt to different screen sizes using **responsive** grid layouts.
- To learn how to add navigation and other **design** elements to web pages.
- To learn how to separate data and display using JavaScript objects and templates.

·Course Outcomes:

- **CO1**: Explain why users need to know where they are, where they can go and what is on a web page.
- **CO2:** Create wireframe mockups of web pages.
- **CO3:** Identify the key functional elements of web pages
- **CO4:** Use Bootstrap components to realise page designs
- **CO5:** Use JavaScript data structures such as arrays and objects to define the data used in a web page
- **CO6:** Use the Handlebars template library to convert data to HTML

<u>Semester – I</u>

MCA CS	S1L05 : Lab on Responsive Web Designing	
PWC	(2 credits: 2 Practical)	
Unit	Topics to be covered	No. of hours
1	HTML Basics, HTML5 Semantic Elements, CSS, CSS3, Responsive Websites, Viewport, Bootstrap - Grid System, Typography, Navigation bar, Carousal, Glyphicons, Tables, Images, Tabs, Modal, Using JavaScript, Using jQuery	30
	Total	30

Semester – I

Course Name: Statistical and Numerical Computing

Course Objectives:

- To understand and implement various concepts of numerical analysis and statistics to solve real life problems.
- To do Analysis of Statistical Data: Frequency distribution; Frequency curve and histogram;
- To understand the process to measure central tendency and dispersion.

Course Outcomes:

- **CO1**: Understand the various approaches dealing with the data using theory of probability.
- **CO2:** Analyze the different samples of data at different levels of significance using various hypothesis testing.
- **CO3:** Develop a framework for estimating and predicting the different samples of data for handling the uncertainties.
- **CO4:** Understand error, source of error and its effect on any numerical computation and also analyze the efficiency of any numerical algorithm.
- **CO5:** Learn how to obtain numerical solutions of nonlinear equations using Bisection, Newton – Raphson and fixed-point iteration methods.
- **CO6:** Solve system of linear equations numerically using direct and iterative methods.

<u>Semester – I</u>

MCA GI1T1: Statistical and Numerical Computing		
PWC	(5 credits – 4 theory + 1 Assignment)	
Unit	Topics to be covered	No. of
		hours
1	Basic statistics: Measure of central tendency, dispersion.	15
	Probability' distribution, introduction to mass function, density	
	function, distribution function, estimation of parameters.	
	Regression Analysis: Linear and Non linear regression. Multiple	
	regression Testing of Hypothesis: Test of Significance, Chi-square	
	test, t-test, ANOVA, F-test.	
2	Interpolation: Newton's Forward, Backward, Sterling & Bessel's	15
	Interpolationformula. Lagrange's Interpolation.	
3	Integration:Trapezoidal,	15
	Simpson'sl/3rd,Weddel'sRule,Rombergintegration. Gauss-	
	Legendre two & three point formula, Newton cotes Formula. Gram-	
	Schmidtorthogonalisation, Tchebycheff Polynomial.	
4	Solution of transcendental and system of linear equations:	15
	Method of Iteration, Method of Bisection. Newton - Raphson	
	Method, Regula-Falsi method. Secant Method; Gauss Elimination	
	Method, Gauss-Jacobi, Gauss-Seidel' LU	
	factorization, Tridiagonalisation, Inverse interpolation. Least	
	Square curve fitting: linear & non-linear.	
	Solution of Differential Equations: Picard's method, Euler-	
	modified method, Taylor's Series method, Runge-Kutta method,	
	Milne's Predictor-Corrector method.	
5	Assignment	15
	Total	75

- 1. Pal, Numerical Methods, OUP
- 2. Balaguruswamy. *Numerical and Statistical Methods*, TMH
- 3. V. Rajaraman, "Introductory methods of Numerical Analysis", PHI.
- 4. A.M. Goon, M.K. Gupta and T.S. Dasgupta, *"Fundamental of Statistics"*, The World Press Pvt. Ltd.

<u>Semester – I</u>

MCA SE1L01 : Lab based on Statistical Package			
PWC(2 credits : 2 Practicals)			
Uni	Topics to be covered	No. of hours	
t			
1	Analyze the data from the term experiment. Be sure you	30	
	interpret the results to your instructor. Then, practice with the		
	following problems. As you do the problems remember to		
	answer these questions. You may collaborate with your		
	classmates, but you should try to do the analyses yourself.		
	1. How many means are being tested?		
	2. Are the observations independent or related?		
	3. Is the hypothesis one-tailed or two-tailed?		
	4. Do the means fit the hypothesis?		
	5. Where the means significantly different?		
	6. How do you know?		
	Total	30	

Semester - I

MCA	MCA SE1L02: Training on Computer Networking		
F	PWC (2 credits : 2 Practicals)		
Uni	Topics to be covered	No. of hours	
t			
1	IP Addressing	30	
	Data Sharing		
	Data Security		
	Blocking of Site		
	RAID Configuration		
	Blocking of ICMP		
	Total	30	

Semester : II

Course Code: MCA CS2T06

Course Name: Object Oriented Analysis and Designing

Course Objectives:

- To Explain OOAD concepts and various UML diagrams
- Select an appropriate design pattern.
- Illustrate about domain models and conceptual classes

- Compare and contrast various testing techniques
- Construct projects using UML diagrams

Course Outcomes:

- **CO1:** Demonstrate the importance of modelling in the software development life cycle.
- CO2: Abstract object-based views for generic software systems.
- **CO3:** Understand the object-oriented approach to analysing and designing systems and software solutions.
- **CO4:** Employ the Unified modelling Language notations to create effective and efficient system designs.
- **CO5:** Understand the difference between writing programs for the software and doing analysis and design.
- CO6: Analyse and Design the given System

MCA CS	MCA CS2T06 : Object Oriented Analysis and Design		
PWC(5 credits – 4 theory + 1 Assignment)			
Unit	Topics to be covered	No. of hours	
1	Introduction: Object Oriented approach, its features &	15	
	significance., S/W Complexity & its causes, S/W Crisis &		
	the related issues need to be resolved		
2	Modeling : Object Modeling : Objects & classes, Links &	15	
	Associations, Generalization & inheritance, Grouping		
	Constructs, Advanced Object Modeling Aggregation,		
	abstract classes, multiple inheritance, Meta data, candidate		
	keys and Constraints. Dynamic Modeling: Events & states,		
	operations, nested state diagram, concurrency. Functional		
	Modeling : DFDS, specifying operations, constraints.,		
	Analysis and System design: Analysis: object modeling,		
	Functional modeling adding operations, iteration		
3	System design : subsystem, concurrency, allocation to	15	
	processors and tasks, management of data stores, control		
	implementation, Boundary condition, Architectural		
	framework, Object Design, Optimization, Implementation		
	of control, Adjustment of inheritance, Design of		
	associations, documentation, comparison of		
	methodologies		
4	Implementation: Using a programming language using a	15	
	database system Programming Styles: Object Oriented		
	style : Reusability extensibility robustness and		
	Programming-In-The-Large		
5	Assignment	15	
		10	
	Total	75	

- 1. Object Oriented Modeling and Design, J. Rum Baugh, PHI,2003
- 2. Object Oriented Analysis and Design, G.Booch, 2000

Course Code: MCA CS2T07

Course Name: Distributed Computing

Course Objectives:

- Study software components of distributed computing systems.
- Know about the communication and interconnection architecture of multiple computer systems.
- Recognize the inherent difficulties that arise due to distributed-ness of computing resources.
- Understanding of networks & protocols, mobile & wireless computing and their applications to real world problems.

Course Outcomes:

- **CO1:** Understand the design, implementation and security issues of distributed systems.
- CO2: Apply knowledge of distributed systems techniques and methodologies.
- **CO3:** Explain the design and development of distributed systems and distributed systems applications.
- **CO4:** Use the application of fundamental Computer Science methods and algorithms in the development of distributed systems and distributed systems applications.
- **CO5:** Understand the difference between writing programs for the software and doing analysis and design.
- **CO6:** Discuss the design and testing of a large software system, and to be able to communicate that design to others.

MCA (MCA CS2T07:Distributed Computing		
PWC(5 credits – 4 theory + 1 Assignment)			
Unit	Topic to be covered	No. of hours	
1	Fundamentals: Definition, Evolution of distributed Computing	15	
	System Distributed Computing System Models, Distributed		
	Operating System, Designing a distributed Operating System,		
	Introduction of distributed computing environment		
	Message Passing: Introduction Desirable features, Issues in IPC		
	by message passing, synchronization, Buffering, Multi datagram		
	messages, encoding and decoding message data.		
2	Remote Procedure Calls: Introduction, The RPC Model,	15	
	Transparency of RPC, Implementing RPC mechanism RPC		
	messages server management, parameter-passing and call		
	semantic, Communication protocols for RPC's.		
	Distributed Shared Memory: Introduction, Architecture of DSM		
	Systems Design and implementation, granularly, structure of		
	shared memory space Consistency models, replacement		
	strategy, Thrashing.		
3	Resource Management: Desirable feature, Task assignment	15	
	approach, Load-balancing approach, Load-sharing approach.		
	Process Management: Process Migration, Threads.		
4	Distributed File Systems: Intakes, Desirable features, File	15	
	models, File accessing models, file-sharing semantic, File-		
	caching schemes, File replication Fault tolerance, Automatic		
	Transactions, Design principle		
5	Assignment	15	
	Total	75	

- 1. George Coulouris, Jean Dollimore and Tim Kindberg, (2002), "*Distributed Systems Concepts and Design*", Third Edition, Pearson Education Asia.
- 2. Liu, *Distributed Computing*, Pearson Education.
- 3. HagitAttiya and Jennifer Welch, *Distributed Computing*, Wiley India.
- 4. Sinha P.K., Distributed Operating Systems: concept and Design, PHI
- 5. Tanenbaum, *Distributed Operating System*, Pearson Education

Semester – II

MCA CS2	L08 : Mini Project I (Lab)	
PWC	(3 credits: 2 Practical + 1 Assignment)	
Unit	Topics to be covered	No. of
		hours
	Student will complete the Synopsis work of the Mini	30
	Project II to be covered in the next semester	
		15
	Total	45

<u>Semester – II</u>

Course Code: MCA GI2T2 Course Name: Optimization Techniques Course Objectives:

- To impart knowledge in concepts and tools of Optimization Techniques.
- To understand mathematical models used in Optimization Techniques.
- To apply these techniques constructively to make effective business decisions.

Course Outcomes:

- **CO1:** Analyze any real life system with limited constraints and depict it in a model form.
- **CO2:** Convert the problem into a mathematical model.
- **CO3:** Understand a variety of problems such as assignment, transportation, travelling salesman etc.
- **CO4:** Solve the problems using a linear programming approach.
- **CO5:** Understand different queuing situations and find the optimal solutions using models for different situations.
- **CO6:** Identify and develop Optimization Techniques models from the verbal description of the real system.

MCA (GI2T2: Optimization Techniques	
P	WC (5 credits – 4 theory + 1 Assignment)	
Unit	Topics to be covered	No. of
		hours
1	Introduction: Nature and Meaning, History, Management	15
	Applications, Modeling. Principles. Characteristics, Scope,	
	Development of OR In India, Role of Computers in OR	
2	Linear Programming: Introduction and Applications of LP,	15
	Limitations of LP Formulation of a LP Model, Graphical Solution of	
	a LPP, Simplex Method, Two Phase Method, Big-M Method.	
3	Transportation, Assignment and Replacement Problem:	15
	Introduction to Transportation Problem. Mathematical Formulation,	
	Feasible Solution and Optimum	
	Solution: Introduction to Assignment Problem, Mathematical	
	Formulation. Traveling Salesman Problem; Introduction to	
	Replacement Problem, Capital Equiprnent, DiscountedCost.	
	Replacement in Anticipation of Failure.	
4	Queuing Problems: Classification of self problems, processing of	15
	n jobs through two machines, three machines, processing of two	
	jobs through m machines.	
	Project Managementb5' PERT-CPM: Introduction, History	
	&Applications, Basic Steps. Network DiagramRepresentation,	
	Rules, Time Estimates and Critical Path in Network, Analysis, Uses	
	and Applications of PERT/CPM.	
5	Assignment	15
	Total	75

- 1. Pai, "Operation Research", OUP.
- 2. Paneerselvam, "Operation Research", PHI.
- 3. Hillier & Lieberrnan, "Operations Research", TMH.
Semester – II

Course Code: MCA DSE2T1

Course Name Elective 1 (Option 1: Compiler Design)

Course Objectives:

• To explore the principles, algorithms, and data structures involved in the design and construction of compilers. Topics include context-free grammars, lexical analysis, parsing techniques, symbol tables, error recovery, code generation, and code optimization.

Course Outcomes:

- **CO1:** Understand the concept of Compilers and translators, the phases of a compiler, and Compiler writing tools.
- **CO2:** Construct a parse tree, or explain why no parse tree exists, given a BNF grammar and a string over the appropriate alphabet.
- **CO3:** Implement a lexical analyzer from a specification of a language's lexical rules.
- CO4: Compute the FIRST set and the FOLLOW set for a BNF grammar
- **CO5:** Apply simple intermediate code optimizations.
- CO6: Implement code generator.

MCA DSE2T1-1:Compiler Design			
P	PWC (5 credits – 4 theory + 1 Assignment)		
Unit	Topic to be covered	No. of hours	
1.	INTRODUCTION TO COMPILING: Compilers Analysis of source	15	
	Program, The Phases of a compiler, The tasks of a compiler,		
	Analysis of the Source Program, Phases and Passes in		
	compilers.		
	LEXICAL ANALYSIS: Lexical Analysis - The role of Lexical		
	Analyzer, Input Buffering, Specification of Tokens, Recognition of		
	Tokens, A Language for Specifying Lexical Analyzer, Review of		
	Regular Expressions, Finite State Machines, Finite Automata		
	based, Pattern Matching. Specification and recognition of tokens,		
	a language for specifying lexical analyser, Lexical Analyser		
	Generator, Design of Lexical Analyzer generator, Programming		
	assignment on lex, Regular expression to finite automation - Use		
	of a tool for generating lexical analyser.		
2	SYNTAX ANALYSIS -Introduction to syntax analysis, the Role of	15	
	Parser, Review of grammars, Chomsky Hierarchy, Context-free		
	Grammars, Writing a Grammar, Top-down Parsing, error		
	recovery in Top down parsers, Bottom-up Parsing, Overview of		
	Shift reduce parsing, Operator-Procedure Parsing, Finite		
	automata of LR(0) items and LR (0) parsing, SLR parsing,		
	Canonical LR Parsing, LALR Parsing, Compaction of LR parsing		
	table, Using ambiguous grammars, Error recovery in bottom up		
	TYPE CHECKING: Type systems, Specification of simple type		
	checker, equivalence of type expressions, type conversions,		
	overloading of functions and operators, Polymorphic functions, an		
	algorithm for unification.		

3	DYNAMIC STORAGE ALLOCATION TECHNIQUES:	15
	Introduction to Dynamic storage, symbol tables, Symbol Table	
	Organization, Symbol attributes and Symbol table entries, Local	
	Symbol Table management, Global Symbol table structure,	
	language facilities for dynamic storage allocation, dynamic	
	storage allocation techniques. Symbol Table for block structured	
	language, Different types of dynamic storage Allocation	
	Techniques, Static versus dynamic storage allocation techniques.	
	INTERMEDIATE CODE GENERATION: Intermediate	
	Languages, Declarations, Assignments, Boolean Expression,	
	Flow control statements - Back patching, Case Statements	
	CODE GENERATION: Introduction to optimization techniques,	
	Issues in the design of code Generator, the target Machine, Run-	
	Time storage Management, Basic blocks and flow graphs, Next-	
	use information	
4	A SIMPLE CODE GENERATOR: Design of a simple code	15
	generator, A simple code generator, Register allocation and	
	Assignment, The DAG representation of Basic blocks.	
	CODE OPTIMIZATION-I: Introduction, Early Optimizations, The	
	Principle of Optimization, Optimization of Basic Blocks, Loops in	
	flow graphs, Constant-Expression Evaluation (Constant Folding,	
	Algebraic Simplifications and Re-association, Value numbering,	
	Copy Propagation. Redundancy Elimination: Common-Sub	
	expression Elimination, Loop-Invariant Code Motion, Partial-	
	Redundancy Elimination, Redundancy Elimination and Re-	
	association, Code Hoisting, Loop Optimizations: Induction-	
	Variable Optimizations, Unnecessary Bounds – Checking	
	Elimination. Procedure Optimizations: Tail-Call Optimization and	
	Tail-Recursion Elimination, Procedure Integration, In-Line	
	Expansion, Leaf-Routine Optimization and Shrink Wrapping.	

5	Assignment	15
	Total	75

- 1. Torben/ MongensenEgidius, *Basics of Compiler design*
- 2. W Andrew, Modern Compiler Implementation in C. AppelCombridge University Press
- 3. Aho Alfred V., Lam Monica S., Jeffrey Ravi Sethi, , Ullman D., *Compiler Principles, techniques and Tools*, 2nd edition, Pearson Publication.

Semester II

Course Name Elective 1

(Option 2:Digital Image processing and Multimedia)

Course Objectives:

- To describe and explain basic principles of digital image processing;
- To design and implement algorithms that perform basic image processing (e.g., noise removal and image enhancement);
- To design and implement algorithms for advanced image analysis (e.g., image compression, image segmentation & image representation);
- To assess the performance of image processing algorithms and systems.

Course Outcomes:

- **CO1:** Explore and evaluate the role of different components of a digital image processing.
- **CO2:** Understand the wide range of present and future applications of digital image processing, both for the visible spectrum images such as those from other sensors (Radar, Ultrasonic, etc.).

- **CO3:** Explain and Understand the multidimensional digital signal processing in the field of images (2D) and video (3D).
- **CO4:** Differentiate and justify the two major approaches to image processing: processing in the spatial and frequency domains.
- **CO5:** Analyze and implement different techniques of coding and image compression
- **CO6:** Understand the image analysis and use methods of image segmentation and mathematical morphology.

MCA DSE2T1-2: Digital Image Processing & Multimedia			
PW	PWC(5 credits – 4 theory + 1 Assignment)		
Unit	Topic to be covered	No. of	
		hours	
1	Overview, Computer imaging systems, Image analysis,	15	
	preprocessing, Human visual system, Image model, Electronic		
	Eye Contact, Spectrum Oct09, Image enhancement		
2	Gray scale mods, Histogram mod, Discrete transforms,	15	
	Fourier, Discrete cosine, Walsh-Hadamard, Haar, PCT,		
	Filtering, Wavelet transform, Pseudocolor, Image		
	enhancement, Sharpening, Smoothing, Image restoration,		
	Overview, System model, Noise removal: order filters		
3	Image restoration: noise removal: mean & adaptive filters,	15	
	Degradation model, Inverse filter, Freq. filters, Geometric		
	transforms, Image compression: system model, Lossless		
	methods, Image compression: lossy methods		
Λ	Multimedia Overview Definition Applications and	15	
4	Designer Authorizer (Line er Otudia), Intra dustian to Line er Otudia	15	
	Design;Authoring (HyperStudio), Introduction to HyperStudio-		
	The Metaphor; The Basics (Cards, Buttons, Text);HyperStudio		
	Resources, Instructional Design-Objectives;Content (print,		

	graphics, sounds, etc.); Interaction; Assessment;	
	Closure, Screen Design-Metaphors and Themes; Colors and	
	Backgrounds; Text (size, color, placement); Navigation;	
	Consistency; Transitions and Links, Use of Sound,	
	HyperStudio Sounds, Internet Resources, HyperStudio Tips	
	and Tricks, Multimedia Portfolios, Advanced Button Features	
5	Assignment	15
	Total	75

- 1. Gonzalez Rafael.C. & Woods Richard E. Digital Image Processing, 2nd Ed., Prentice Hall
- 2. Gonzalez R.C. and Thomason M.G. Syntactic Pattern Recognition : An introduction
- 3. Devijver P.A. and Kittler J. Pattern Recognition A Statistical Approach
- 4. Jain A.K. Fundamentals of Digital Image Processing
- 5. DudaR.O. and HartP.E. Pattern Classification and Scene Analysis
- 6. Li Ze Nian Fundamentals of Multimedia
- 7. Mayer Richard E. Multimedia Learning

Semester II

Course Code: MCA DSE2T1

Course Name: Elective 1 (Option 3: Computer Graphics)

Course Objectives:

- To introduce the components of a graphics system and become familiar with building the approach of graphics system components and algorithms related with them.
- To learn the basic principles of 3- dimensional computer graphics.
- Provide an understanding of how to scan convert the basic geometrical primitives, how to transform the shapes to fit them as per the picture definition.

- Provide an understanding of mapping from a world coordinates to device coordinates, clipping, and projections.
- Provide brief ideas about the application of computer graphics concepts in the development of computer games, information visualization, and business applications.

Course Outcomes:

- **CO1**: List the various concepts used in computer graphics.
- **CO2**: Implement various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping.
- **CO3**: Explain and Understand the multidimensional digital signal processing in the field of images (2D) and video (3D).
- **CO4**: Describe the importance of viewing and projections.
- CO5: Define the fundamentals of animation, virtual reality and its related technologies.
- **CO6**: Design an application with the principles of virtual reality.

MCA DSE2T1-3: Computer Graphics		
PWC(5 credits – 4 theory + 1 Assignment)		
Unit	Topic to be covered	No. of
		hours
1	Introduction: History, Advantages, Application, I/O Devices	15
	Graphic Packages, Languages.	
	Jag Free Images on a Raster CRT Interactive Graphics processor for Digital Logic Simulation System	

2	Graphics Techniques: Video-Display Devices, Raster-Scan	15
	and Random-Scan Systems; Graphics Monitors, Input	
	Devices, Points and Lines; Line Drawing Algorithms, Mid-Point	
	Circle and Ellipse Algorithms; Scan Line Polygon Fill Algorithm,	
	Boundary-Fill and Flood- Fill	
	Translation, Scaling, Rotation, Reflection and Shear	
	Transformations; Matrix Representations and Homogeneous	
	Coordinates; Composite Transforms, Transformations	
	Between Coordinate Systems, Viewing Pipeline, Viewing	
	Coordinate Reference Frame, Window to View-Port	
	Coordinate Transformation, Viewing Functions, Line and	
	Polygon Clipping Algorithms.	
3	2-D Geometrical Transforms and Viewing::Drawing	15
	Elementary figures, Polygon Filling, Transformations,	
	Windowing and clipping, Display file segmentation. Interactive	
	Graphics: Interactive input techniques, Event handling, Input	
	functions;	
	Hidden line and surface removal, rendering, Computer	
	Animation. 3D Shaded computer Animation the use of 3D	
	abstract Graphical types in Computer Graphics and Animation.	
	3-Dimensional Reconstruction. A case study, Real-time	
	graphics.	
4	3-D Object Representation, Geometric Transformations	15
	and Viewing: Polygon Surfaces, Quadric Surfaces, Spline	
	Representation, Bezier and B-Spline Curves; Bezier and B-	
	Spline Surfaces; Illumination Models, Polygon Rendering	
	Methods, Viewing Pipeline and Coordinates; Geneal	
	Projection Transforms and Cipping.	
	Accience	45
5	Assignment	15
	Total	75

- 1. Hearn Donald, and Baker M.Pauline "Computer Graphics" C Version, Pearson Education.
- 2. Hearn, and Baker "*Mathematical Elements for Computer Graphics*", Tata McGraw Hill Computer Graphics by, PHI
- 3. Newman and Sproull R. F. "Principles of Interactive Graphics", McGraw-Hill.

<u>Semester – II</u>

Course Name: Elective 2 (Option 1: Introduction to Machine Learning)

Course Objectives:

- To introduce students to the basic concepts and techniques of Machine Learning.
- To develop skills of using recent machine learning software for solving practical problems.
- To gain experience of doing independent study and research.

Course Outcomes:

- **CO1**: Recognize the characteristics of machine learning that make it useful to real-world problems.
- **CO2**: Understand the basic underlying concepts for supervised discriminative and generative learning.
- **CO3**: Characterize machine learning algorithms as supervised, semi-supervised, and unsupervised.
- **CO4**: Understand the concept behind neural networks for learning non-linear functions.
- **CO5**: Understand and apply unsupervised algorithms for clustering.
- **CO6**: Understand the foundation of generative models.

MCA DSE2T2-1: Introduction to Machine Learning		
P	WC (5 credits – 4 theory + 1 Assignment)	
Unit	Topics to be covered	No. of
		hours
1	Introduction to Machine Learning	15
	Introduction, Different Types of Learning, Hypothesis Space and	
	Inductive Bias, Evaluation and Cross-Validation, Linear	
	Regression,	
	Introduction to Decision Trees, Learning Decision Tree, Overfitting	
2	KNN, Feature Selection and Extraction, Bayesian Learning	15
	k-Nearest Neighbour, Feature Selection, Feature Extraction,	
	Collaborative Filtering, Exercise on kNN and PCA	
	Bayesian Learning, Naive Bayes, Bayesian Network	
3	Logistic Regression, SVM and Neural Network	15
Ū		
	Logistic Regression, Introduction Support Vector Machine	
	SVM : The Dual Formulation, SVM : Maximum Margin with Noise,	
	Nonlinear SVM and Kernel Function, SVM : Solution to the Dual	
	Problem	
	Neural Network Introduction, Multilayer Neural Network, Neural	
	Network and Backpropagation Algorithm, Deep Neural Network	
4	Computational Learning, Sample Complexity and Clustering	15
	Introduction to Computational Learning Theory	
	Sample Complexity : Finite Hypothesis Space	
	VC Dimension	
	Introduction to Clustering, K Means Clustering, Agglomerativo	
	Hierarchical Clustering	
5	Assignment	15

- 1. Tom M. Mitchell (2017), *Machine Learning*, McGraw Hill Indian Edition.
- Andreas Muller and Sarah Guido (2017), Introduction to Machine Learning with Python, O' Reilly Publication, 2nd Edition.
- 3. Yuxi (Hayden) Liu (2017), Python Machine Learning By Example, Packt Publishing, Mumbai.

<u>Semester – II</u>

Course Name: Elective 2 (Option 2: Artificial Intelligence)

Course Objectives:

- Gain a historical perspective of AI and its foundations.
- Become familiar with basic principles of AI toward problem solving, inference, perception, knowledge representation, and learning.
- Investigate applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
- Experiment with a machine learning model for simulation and analysis.
- Explore the current scope, potential, limitations, and implications of intelligent systems

Course Outcomes:

After completion of the course, the students will be able to:

CO1: Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations.

CO2: Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.

- **CO3**: Demonstrate awareness and a fundamental understanding of various applications of Al techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
- **CO4**: Demonstrate proficiency developing applications in an 'AI language', expert system shell, or data mining tool.
- CO5: Demonstrate proficiency in applying scientific method to models of machine learning.
- **CO6**: Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications.

MCA DSE2T2-2: Artificial Intelligence			
Р	PWC (5 credits – 4 theory + 1 Assignment)		
Unit	Topics to be covered	No. of	
		hours	
1	Approaches to AI: Turing Test and Rational Agent Approaches;	15	
	State Space Representation of Problems, Heuristic Search		
	Techniques, Game Playing, Min-Max Search, Alpha Beta Cutoff		
	Procedures.		
2	Knowledge Representation: Logic, Semantic Networks, Frames,	15	
	Rules, Scripts, Conceptual Dependency and Ontologies; Expert		
	Systems, Handling Uncertainty in Knowledge.		
	Planning: Components of a Planning System, Linear and Non		
	Linear Planning; Goal Stack Planning, Hierarchical Planning,		
	STRIPS, Partial Order Planning.		
3	Natural Language Processing: Grammar and Language; Parsing	15	
	Techniques, Semantic Analysis and Prgamatics.		
	Multi Agent Systems: Agents and Objects; Agents and Expert		
	Systems; Generic Structure of Multiagent System, Semantic Web,		
	Agent Communication, Knowledge Sharing using Ontologies,		
	Agent Development Tools.		
4	Fuzzy Sets: Notion of Fuzziness, Membership Functions,	15	
	Fuzzification and Defuzzification; Operations on Fuzzy Sets, Fuzzy		

	Functions and Linguistic Variables; Fuzzy Relations, Fuzzy Rules	
	and Fuzzy Inference; Fuzzy Control System and Fuzzy Rule Based	
	Systems.	
	Artificial Neural Networks (ANN): Supervised, Unsupervised and	
	Reinforcement Learning; Single Perceptron, Multi Layer	
	Perceptron, Self Organizing Maps, Hopfield Network	
5	Assignment	15
	Total	75

- 1. Norving Peter and Russell Stuart J., "Artificial Intelligence: A modern Approach"
- 2. S.S, Chandra, Vinod and HareendransAnand, "Artificial Intelligence and Machine Learning", PHI

<u>Semester – II</u>

Course Name Elective 2 (Option 3: Soft Computing)

Course Objectives:

- Introduce students to soft computing concepts and techniques and foster their abilities in designing and implementing soft computing-based solutions for real-world and engineering problems.
- Introduce students to fuzzy systems, fuzzy logic and its applications.
- Explain the students about Artificial Neural Networks and various categories of ANN.

Course Outcomes:

After completion of the course, the students will be able to:

CO1: Comprehend the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory.

- **CO2**: Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic
- CO3: Understand the fundamental theory and concepts of neural networks
- CO4: Identify different neural network architectures, algorithms, applications and their limitations
- **CO5**: Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications
- **CO6**: Reveal different applications of these models to solve engineering and other problems.

MCA	MCA DSE2T2-3: Soft Computing		
PW	PWC(5 credits – 4 theory + 1 Assignment)		
Unit	Topic to be covered	No. of	
		hours	
1	Neural Networks, Application Scope of Neural Network, Fuzzy	15	
	Logic, Genetic Algorithm, Hybrid Systems and Soft computing.		
	Artificial Neural Network: Fundamental Concept, Evolution of		
	Neural Networks, Basic Models of Artificial Neural Network,		
	Important Terminologies of ANNs, McCulloch-Pitts Neuron, and		
	Hebb Network		
2	Introduction to Fuzzy logic, Classical Sets(Crisp Sets),	15	
	Operations of Classical Sets, Fuzzy Sets Operations. Classical		
	Relations and Fuzzy Relations: Cartesian Product of Relation,		
	Classical Relation, Fuzzy Relations, Tolerance and Equivalence		
	Relations, No interactive Fuzzy Sets. Membership Functions:		
	Features of Membership Functions, Fuzzification and		
	Defuzzification.		

3	Fuzzy Rule Base and Approximate Reasoning	15
	Introduction, Truth Values and Table in Fuzzy Logic,	
	FuzzyPropositions, Fuzzy Reasoning, Fuzzy Inference System.	
	Fuzzy Decision Making: Individual Decision Making,	
	Multiperson Decision Making, Multiobjective Decision Making,	
	Multiattribute Decision Making, Fuzzy Bayesian Decision	
	Making. Fuzzy Logic Control Systems: Control System	
	Design, Architecture and Operation of FLC system, FLC System	
	Models, Application of FLC Systems.	
		45
4	Hybrid Soft Computing Techniques	15
	Neuro-Fuzzy Hybrid Systems, Generic Neuro-Hybrid	
	Systems, Genetic Fuzzy Hybrid and Fuzzy Genetic Hybrid	
	Systems, Simplified Fuzzy ARTMAP. Applications of	
	SoftComputing: A Fusion Approach of Multispectral Images	
	with SAR (Synthetic Aperture Rader), Optimization of Traveling	
	Salesmen Problem using Genetic Algorithm Approach, Genetic	
	Algorithm-Based Internet Search Technique, Soft computing	
	Based Hybrid Fuzzy Controllers.	
5	Assignment	15
	Total	75
		15

- 1. Sivanandam S.N., Deepa S.N. *Principles of Soft Computing*, Wiley.
- 2. Bernadette Bouchon-Meunier*Fuzzy Logic and Soft Computing*, World Scientific.
- 3. ChaturvediDevendraK., *Soft Computing: Techniques and its Applications in Electrical Engineering*, Springer Science & Business Media.

MCA SE2L03: Technical Presentation and Report Writing						
PWC (2 credit : 2 Practicals)						
Unit	Topic to be covered	No. of hours				
1	Grammatical Use: punctuation, vowel, consonant,	30				
	Preposition + noun, uncountable and plural nouns, verb					
	patterns, uses of tenses, Meanings & opposites					
	Writing Skills: Sentence formation; Use of appropriate					
	diction; Paragraph and Essay Writing; Coherence and					
	Cohesion.					
	Lechnical writing : Differences between technical and literary					
	style, Elements of Style, Common Errors.					
	Letter Writing: Formal, informal and demi-official letters;					
	business letter					
	Ich Application : Cover letter, Differences between bio-data					
	CV and Resume					
	CV and Resume.					
	Report Writing: Basics of Report Writing, Structure of a					
	report; Types of reports.					
	Presentation Skills : Oral presentation and public speaking					
	skills: business presentations					
	Technology-based Communication: Netiquettes: effective					
	e-mail messages; power-point presentation; enhancing					
	editing skills using computer software					
	Total	30				

<u>MCA SE204</u> : Personality Development & Inter Religious Values PWC (2 credits: 2 Practical)

Unit	Topics to be covered	No. of hours
1	Nature and Need of Inter-Religious study, Scope of Comparative	05
	Religion.	
2	Salient Features of Hinduism, Jainism and Buddhism, Salient	10
	Features of Christianity, Islam, and Sikhism	
3	Similarities and Differences among Religions, Conflicting Truth claim	10
	of different religions and inter-religious Harmony	
4	Religious Tolerance, Secularism	05
	Total	30

Reading List:

- 1. Chudhary, C. Neeraj (1979). "Hinduism", B.I. Publication, New Delhi.
- 2. Devraj, N.K., (1917)- "Hinduism and Christianity" Asian Publishing House.
- 3. Gordh, Geo rge, -"Christian Faith and its Cultural Expression", Printed in USA.
- 4. Hick, John,- "Philosophy of Religion", Prentice Hall of India.
- 5. Hopfe, M. Lewis (1983)- "Religion of the World", Macmillan Publishing Co. Inc, New Yourk.
- 6. Masih, Y. (1990)- "Comparative study of Religion", MotilalBanarsidass.
- Seth, S. Arijit, Pummer, Reinhard, (1979)- "Comparative Religion", Vikas Publishing House Pvt. Ltd. Delhi.
- 8. Singh, B.N. (1994)- "Vishwa Dharma DarshankiSamasyain", Ratna Printing Works.
- 9. Tiwari, NathKedar, (1983)- "Comparative Religion", MotilalBaranrsidass.
- 10. Ward, CHS (1998)- "Early Buddhism", Caxton Publication, Delhi.

Semester – III

Course Code: MCA CS3T09

Course Name: Advanced Web Designing using J2EE

Course Objectives:

- Create Web Applications using Java Servlet
- Manage Web Session using Servlet and JSP
- Use JavaBeans in JSP
- Develop Custom Tags in JSP
- Handle Errors and Exceptions in Web Applications
- Use NetBeans IDE for creating J2EE Applications

Course Outcomes:

- CO1: Learn the Internet Programming, using Java Applets
- **CO2:** Create a full set of UI widgets and other components, including windows, menus, buttons, checkboxes, text fields, scrollbars and scrolling lists
- **CO3:** Apply event handling on AWT and Swing components.
- CO4: Access database through Java programs, using Java Data Base Connectivity (JDBC)
- **CO5:** Create dynamic web pages, using Servlets and JSP.
- CO6: Understand the multi-tier architecture of web-based enterprise applications using
 - / Enterprise JavaBeans (EJB).

MCA	MCA CS3T09: Advanced Web Designing using J2EE				
PV	PWC(5 credits – 4 theory + 1 Assignment)				
Unit	Topics to be covered	No. of			
		hours			
1	Web Programming : Concept of JDBC (Java Database	15			
	Connectivity), working with SQL, Stored Procedure, Security in				
	Java, Class loader, Byte code Verification, security Manager				
	and permission, Digital Signatures, Code Signing, Encryption.				
	Introduction to J2EE : Its advantage, Enterprise Architecture				
	Types, Understanding EJB, its architecture, EJB Roles, Benefits				
	and limitations of Enterprise Beans. Session Beans: Stateful				
	and Stateless Beans, Entity Beans, Beans Managed				
	Persistence, Container Managed Persistence.				
2	Advanced Web technology in J2EE: Understanding Directory	15			
	Services and JNDI, Introduction to LDAP, LDAP operation,				
	working with LDAP Server, Introduction to Web Containers and				
	Web Applications, Introduction to HTTP protocol, Web				
	Application Life Cycle.				
3		15			
	Creating Web Application, Understanding Service				
	programming its Life Cycle Servet Configuration				
	Lindorstanding Societ cossions Lindorstanding of ISP and				
	ISTI ISD documents Elements tag extensions tag librarios				
	validation translation time mechanism translation time classes				
	Understanding JavaSonver Pages Standard Tag Library tags in				
	ISTL core tag library XML tag library using Internationalization				
	Actions				
4	Web Application Deployment and Authentication: Enterprise	15			
	Application Development Process, Deploying Web Application	10			
	Inderstanding CLASSPATH Securing Web Applications				
	onderstanding OLASSPATH, Securing web Applications, Dasic				

	authentication with	JAX-RPC	Example,	Client	Certificate	
	Authentication over H	ITTP/SSL				
5	Assignment					15
	Total					75

- 1. Shah Deven N (2012), "A Complete Guide to Internet and Web Programming", DreamTech Press, New Delhi
- 2. KamaRaj I (2002), "Internet and Web Technologies", TataMcGraw Hill, New Delhi.
- 3. YoungMargaretLevine (2002), "Internet the Complete Reference", TataMcGraw Hill, Second Edition, New Delhi.

Semester - III

Course Code: MCA CS3T10

Course Name: Cloud Computing

Course Objectives:

- To provide students with the fundamentals and essentials of Cloud Computing.
- To provide students a sound foundation of Cloud Computing so that they are able to start using and adopting Cloud Computing services and tools in their real-life scenarios.
- To enable students exploring some important cloud computing driven commercial systems and applications.
- To expose the students to frontier areas of Cloud Computing and information systems, while providing sufficient foundations to enable further study and research.

Course Outcomes:

- **CO1:** Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.
- **CO2:** Apply the fundamental concepts in data centers to understand the trade-offs in power, efficiency and cost.
- **CO3:** Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.
- **CO4:** Analyze various cloud programming models and apply them to solve problems on the cloud.

MCA C	MCA CS3T10: Cloud Computing				
PWC	(5 credits – 4 theory + 1 Assignment)				
Unit	Topic to be covered	No. of			
		hours			
1	Introduction- Objectives, From collaborative to the Cloud – A	15			
	short history Client – Server Computing, Peer-to-Peer				
	Computing, Distributed Computing, Collaborative Computing,				
	Cloud Computing, Functioning of Cloud Computing, Cloud				
	Architecture, Cloud Storage, Cloud Services, Industrial				
	Applications, Infrastructure Services, Platform Services,				
	Software Services - Software as service , Management and				
	Administration, Performance, Security and Energy Efficiency				
	Cloud Computing Technology- Introduction-Objectives,				
	Clients – Mobile – Thin – Thick, Security - Data Linkage -				
	Offloading Work - Logging - Forensics - Development –				
	Auditing, Network- Basic Public Internet- The Accelerated				
	Internet- Optimized Internet Overlay- Site-to-Site VPN- Cloud				
	Providers- Cloud Consumers - Pipe Size- Redundancy,				
	Services- Identity- Integration- Mapping- Payments- Search.				

2	Accessing the Cloud and Data Management - Introduction-	15
	Objectives, Platforms- Web Application Framework- Web	
	Hosting Services- Proprietary Methods, Web	
	Applications- API's in Cloud Computing, Browsers for Cloud	
	Computing- Internet Explorer- Mozilla Firefox- Safari-	
	Chrome.	
	Information Storage in Cloud Computing- Introduction-	
	Objectives, Storage as a Service, Storage Providers- Amazon	
	Simple Storage Service- Nirvanix- Google	
3	Data Management- Introduction- Objectives, Data Security-	15
	Data Location- Data Control- Securing data for transport,	
	Scalability and Cloud Services- Large Scale Data Processing-	
	Databases and Data Stores- Data Archival.	
	Cloud Computing Standards- Introduction- Objectives, Best	
	Practices and Standards, Practical Issues- Interoperability-	
	Portability- Integration- Security, Standards Organizations and	
	Groups- Cloud Security Alliance- Distributed Management	
	Task Force (DMTF)- National Institute of Standards and	
	Technology (NIST)- Open Cloud Consortium (OCC)	
4	Desktop and Device Management- Introduction- Objectives,	15
	Desktop Virtualization- Across Industries- Client Desktops,	
	Desktop placement in the cloud- Merits- Desktop as a Service	
	(DaaS), Desktop Management- Watching the four areas-	
	Asset Management	
	Cloud Governance-Introduction-objectives, IT	
	Governance, Deciding the Governor, Risk Assessment of	
	running the cloud- Understanding possible risks- Performance	
	monitoring and measurement- Measurement	
	Methods, Working of Governance- Establishment of the	
	Governance Body- IT Service Performance – Monitoring and	

	Measuring-	Cataloging	control	and	Compliance	
	Data,Virtualiza	ation concepts				
5	Assignment					15
	Total					75

- 1. Kai Hwang, Geoffrey C.Fox, and Jack J. Dongarra, "Distributed and Cloud Computing", Elsevier India Private Limited, 2012.
- 2. Foster and Kesselman, "The Grid : Blueprint for a New Computing Infrastructure", Morgan Kauffman publishers Inc.2004
- 3. Coulouris, Dollimore and Kindber, "Distributed System: Concept and Design", Fifth Edition, Addison Wesley, 2011.
- Michael Miller, "Cloud Computing", Dorling Kindersley India,2009. 5. Anthony T. Velte, Toby J. Velte and Robert Elsenpeter, "Cloud computing: A practical Approach", McGraw Hill,2010

Semester- III

Course Code: MCA CS3T11

Course Name Data and Web Mining

Course Objectives:

- Learn about introduction to methods and theory for development of data warehouses and data analysis using data mining.
- To identify the scope and essentiality of Data Warehousing and Mining.
- Data quality and methods and techniques for preprocessing of data.
- To analyze data, choose relevant models and algorithms for respective applications.

Course Outcomes:

After completion of the course, the students will be able to:

- **CO1:** Understand Data Warehouse fundamentals, Data Mining Principles.
- **CO2:** Design data warehouse with dimensional modelling and apply OLAP operations.
- **CO3:** Identify appropriate data mining algorithms to solve real world problems.
- CO4: Apply the association rules for mining the data
- **CO5:** Design and deploy appropriate classification techniques.

CO6: Cluster the high dimensional data for better organization of the data.

MCA C	MCA CS3T11 : Data & Web Mining				
PV	PWC (5 credits – 4 theory + 1 Assignment)				
Unit	Topics to be covered	No. of			
		Hours			
1	Data Warehousing: Overview, Definition, Delivery Process,	15			
	Difference between Database System and Data Warehouse,				
	Multidimensional Data Model, Introduction to KDD process -				
	Knowledge Discovery from Databases - Need for Data				
	Preprocessing –Data Cleaning – Data Integration and				
	Transformation . Data Cubes, Stars, SnowFlakes, Fact				
	Constellations, Concept hierarchy, Process Architecture, 3 Tier				
	Architecture, Data Marting. ROLAP, MOLAP, HOLAP, Data Mining				
	interface, Security, Backup and Recovery, Tuning Data				
	Warehouse, Testing Data Warehouse. Relationship between				
	warehouse and mining. Data mining issues in object oriented				
	databases, spatial databases and multimedia databases and text				
	bases.				
2	Data Mining:	15			

Э		
F	Assignment	15
	attributes. Web Structure mining	
	Introduction, Web Usage mining, Web content mining, Web log	
	Parallel approaches for clustering.	
	for continuous for discrete data, Scalability of clustering algorithms.	
	– Density-Based -Grid-Based Methods – Model-Based Clustering	
	Clustering Methods – Partitioning Methods – Hierarchical methods	
	Types of Data in Cluster Analysis – A Categorization of Major	
4	Cluster Analysis:	15
	algorithms, Classification methods K- nearest neighbor classifiers	
	– Classification by BackPropagation – fuzzy set theory and genetic	
	Introduction – Bayesian Classification – Rule Based Classification	
	Different classification algorithms. Classification by Decision Tree	
3	Classification vs. Prediction:	15
	pattern growth	
	association rules. Association rule algorithms-A priori and frequent	
	– Multidimensional and multilevel association rules. Classification	
	Introduction - Data Mining Functionalities - Association Rule Mining	
	examples	
	Aggregation Description of Data mining query language with	
	Data Integration and Transformation. Data Reduction:-Data Cube	
	Pogrossion Computer and Human inspection) Inconsistent Data	
	Pata Cleaning: Missing Values, Noisy Data (Rinning, Clustering,	
	Functionalities Data Processing Form of Data Proprocessing	

- 1. Han J., Kamber M., Data Mining Concepts and Techniques, Harcourt India.
- 2. Dunham M., Data Mining: Introductory and Advanced Topics, Pearson Pub.
- 3. Pujari, A.K., Data Mining Techniques, Universities Prss.

- 4. PudiVikram, Krishna P.Radha, Data Mining,
- 5. Han Jiawei,KamberMicheline,Pei Jian,Data Mining Concepts and Techniques, Morgan Kaufimann Pub.

Semester - III

MCA CS3L12:Mini Project II (Lab)				
PWC(3 credits: 2 Practical + 1 Assignment)				
Unit	Topics to be covered No. of			
		hours		
1	Apply the concept of Web Technology to develop mini project	30		
	such as:			
	1) Online e-Market Buy/Sell Goods			
	2) Complaint management System			
	3) Dynamic College Website			
	4) Online Job Portal			
	5) E-Shop			
2	Assignment	15		
	Total	45		

Semester - III

Course Code: MCA DSE3T3

Course Name: Elective 3 (Option 1: Management Information System and E-Commerce)

Course Objectives:

- To understand the basic principles and working of information technology.
- Describe the role of information technology and information systems in business

- To contrast and compare how internet and other information technologies support business processes
- To give an overall perspective of the importance of application of internet technologies in business administration.

Course Outcomes:

After completion of the course, the students will be able to:

- **CO1**: Remember the fundamental concepts of information systems.
- **CO2**: Understand the knowledge about management of information systems
- **CO3**: Apply a framework and process for aligning organization's IT objectives with business strategy.
- CO4: Analyse the use information technology to solve business problems
- CO5: Evaluate how information technology impacts a firm
- CO6: Illustrate the impact of information systems in society

Semester – III

MCA D	MCA DSE3T3-1 : Management & Information System And E-Commerce				
PW	C (5 credits – 4 theory + 1 Assignment)				
Unit	Topics to be covered	No. of hours			
1	Management system: Organization, Types of Organization,	15			
	Types of Management system, Levels of Management,				
	Management System Requirement, Role of MIS, Objectives,				
	characteristics, Components of MIS, System- Information				
	System: classification, characteristics, Information Resource				
	Management: Objective, component, Information System: TPS,				

	MIS, ISS, OAS, Data Processing, Introduction to DBMS: objectives, components	
2	 Decision Support System: Types of Decision, Decision making process and MIS, Decision support system: DSS Definition, characteristics, Types of DSS, DSS components, DSS functions DSS Model: Development of DSS, DSS Applications, Group DSS Portfolio Management & IT application: Portfolio Management Concept, Portfolio Management Method, Design and Implementation of Portfolio management, Tools and Techniques 	15
3	Management Function and Business process: Sale and Order processing, Finance & Budgeting, Human Resource Management, Production Plan & Control, Marketing Enterprise Resource Plan (ERP): Evolution of Enterprise Information System, Concept of ERP, Supply Chain Management, Customer Relationship Management, ERP Design and Implementation, ERP tools : SAP, iCUBE.	15
4	Introduction, Advantages and Disadvantages of E-commerce, Traditional commerce vs. E-commerce, Growth of E- Commerce, E-Commerce Models, Electronic payment Systems, E-Customer Relationship Management, E-Supply Chain Management, security Issues in E-Commerce	15
5	Assignment	15

- 1. Laudon K.C. and Laudon J.P., *Management Information System (Managing the Digital firm)* PHI.
- 2. Sadagopan S., Management Information System, TMH

Semester - III

Course Code: MCA DSE3T3

Course Name: Elective 3 (Option: 2 Enterprise Resource Management)

Course Objectives:

- To provide a contemporary and forward-looking on the theory and practice of Enterprise Resource Planning Technology.
- To focus on a strong emphasis upon practice of theory in Applications and Practical oriented approach.
- To train the students to develop the basic understanding of how ERP enriches the business organizations in achieving a multidimensional growth.
- To aim at preparing the students technological competitive and make them ready to selfupgrade with the higher technical skills.

Course Outcomes:

- **CO1**: Identify the important business functions provided by typical business software such as enterprise resource planning and customer relationship management.
- **CO2:** Describe basic concepts of ERP systems for manufacturing or service companies.

- **CO3:** Understand and be able to articulate the life cycle stages of any ERP implementation
- **CO4:** Analyze a current architecture and perform an effective gap analysis before an ERP implementation.
- **CO5:** Analyze the technical aspect of telecommunication systems, the internet and their roles in the business environment.
- **CO6:** Develop skills necessary for building and managing relationships with customers, and stakeholders.

Semester - III

MCA DSE3T3-2 : Enterprise Resource Management		
PW	C (5 credits – 4 theory + 1 Assignment)	
Unit	Topics to be covered	No. of hours
1	ERP Introduction: Introduction, ERP Planning, Definition,	15
	ERP-A System Perspective, Components of an ERP System,	
	Operating System, Evolution, Benefits of ERP, Reasons for	
	the growth of ERP Market	
	ERP & Related Technologies : Introduction: BPR, MIS, DSS,	
	EIS, Introduction to Product Life Cycle Management (PLM),	
	Advantages & Areas of PLM,	
2	ERP Marketplace and Market Dynamics	15
	Market Overview, SAPAG, Product & Technology, Knowing	
	ERP Market, ERP Functional Modules: Introduction, Finance,	
	Sales & Distribution Manufacturing, Human Resources, Plant	
	Maintenance,	
	ERP Implementation Strategy : ERP Implementation, BIG	
	Bang Strategy, Variants, Phased & Parallel Implementation	

3	Vendors, Consultants and Employees	15
	In-House ERP Development & Implementation, Cost-Benefit	
	Analysis, Supply Chain, Detailed Analysis,	
4	ERP vs. E-Commerce: Meaning of E-Commerce, Future	15
	Directives in ERP, ERP & Internet, Integrating ERP into	
	Organizational Culture, ERP & CRM Integration.	
5	Assignment	15
	Total	75

1. ZaveriJyotindra (2012), "*Enterprise Resource Planning*", Himalaya Publishing House, 2nd Revised Edition

2. Goyel, D.P,(2011), "Enterprise Resource Planning", Tata Mc.Graw-Hill Education.

Semester - III

Course CODE: MCA DSE3T3

Course Name Elective 3 (Option:3 Principles of Management & Organizational Behaviour)

Course Objectives:

- To help students to develop cognizance of the importance of human behavior.
- To enable students to describe how people behave under different conditions and understand why people behave as they do.
- To provide the students to analyze specific human resources demands for future action.

Course Outcomes:

- **CO1:** Demonstrate the applicability of the concept of Organizational behaviour of people in the organization.
- **CO2:** Demonstrate the applicability of analyzing the complexities associated with management of individual behaviour in the organization.
- **CO3:** Analyze the complexities associated with management of the group behaviour in the organization.
- **CO4:** Demonstrate how the organizational behaviour can interchange in understanding the motivation behind behaviour of people in the organization.
- **CO5:** Explain organizational culture and describe its dimensions and to examine various organizational designs.
- **CO6:** Identify the various leadership styles and the role of leaders in a decision making process.

MCA DSE3T3-3: Principles of Management & Organizational Behaviour		
PWC	(5 credits – 4 theory + 1 Assignment)	
Unit	Topics to be covered	No. of
		hours
1	Management Fundamentals : Managerial Skills – planning,	15
	forecasting, Staffing, directing, controlling, Social responsibilities,	
	Levels of Management, Roles & Skills	
	Planning : purpose, principles, characteristics of a good plan,	
	reasons of failures of plans	
	Decision Making: Types of decisions, programmed & non	
	programmed, operational & strategic, barriers in effective decision	
	makings	

	Delegation: Decentralization, accountability, barriers in effective	
	delegation	
2	Organizational Behaviour: organization, organizational	15
	structure, culture; Perception & Learning; Personality and	
	values; Theories of personality, trait theory, psychoanalytic	
	theory, Introversion, Extroversion, Type A and B	
	personalities Motivation : Positive & Negative Motivation;	
	Theories of motivation –Mc Gregor's Participation Model theory X	
	and theory Y, Maslow's Need Hierarchy theory, Herzberg's Two	
	Factor theory,McCleland'sThree Need theory Alderfer's ERG	
	theory, Financial & Non-financial incentives	
3	Leadership: Concept, Characteristics of good leadership,	15
	Leadership Styles, Likert's management Systems & Leadership,	
	Trait Theory of Leadership, Behavioural Theory of Leadership	
	Group Dynamics: Formal & informal groups, Clique, Group	
	formation, Advantages & disadvantages of informal groups, Team	
	Development, Team Spirit	
4	Organizational Conflict Management: Dynamics of conflict,	15
	Resolution of conflict. Organizational Development:	
	Concept; Change management Need for change, resistance	
	to change; Theories of planned change.	
5	Assignment	15
	Total	75

- 1. Koontz & Weirich, (2003), Essentials of Management, Tata McGraw Hill.
- 2. VSP Rao, V Hari Krishna Management: Text and Cases, Excel Books.
- 3. Robbins.S. Organisational Behaviour, X edition., Prentice-Hall, India.
- 4. Hellinegal Slocum, Woodman, Organisational Behaviour, IX edn., Thomson learning.

Semester-III

Course Code: MCA DSE3T04

Course Name: Elective 4 (Option 1: Parallel Computing)

Course Objectives:

- Learn the architectures and communication networks employed in parallel computers.
- Development of efficient parallel algorithms, including examples from relatively simple numerical problems, sorting, and graph problems.
- Able develops parallel computer programs.
- Solve programming problems themselves using parallel computers.

Course Outcomes:

- **CO1:** Understand the basic construction and use of parallel computer and use of the terminology for how one measures the performance of parallel algorithms and parallel computers.
- **CO2:** Design computer programs for different types of parallel computers.
- **CO3:** Apply optimized sequential code for fastest possible execution, analyze sequential programs and determine if they are worthwhile to parallelize.
- **CO4:** Develop parallel algorithms design and different parallel programming models for MPI, POSIX threads.
- **CO5:** Develop algorithms for parallel computers. This applies both to computers with shared memory and with distributed memory.
- **CO6:** Analyse parallel algorithms and performance measures for different programming models applicable to shared and distributed memory computers.

MCA DSE3T4-1:Parallel Computing		
PWC(5 credits – 4 theory + 1 Assignment)		
Unit	Topics to be covered	No. of
		Hours
1	Parallel Computers-Introduction	15
I	The Demand of Computational Speed Types of Parallel	10
	Computers Architectural Features of Message passing	
	Multicomputer Networked Computers as a Multicomputer Platform	
	Potential for increased computational speed Parallel Computer	
	Architecture: A Taxonomy of Parallel Architectures Control	
	Mechanism Address-space Organization Interconnection	
	Networks Processors Granularity SIMD Architecture : Overview of	
	SIMD Architecture Design and Performance Issues: MIMD	
	Architecture : Shared Memory Architecture Uniform and Non-	
	uniform Memory Access Multi Processors. Parallel Vector	
	Processors (PVP). Symmetric Multiple Processors (SMP). CC-	
	NUMA. NUMA and COMA Architectures. Distributed Memory	
	Architecture: Cluster Architecture - Design and other Issues, MPP	
	Architecture.	
2	System Interconnection and Gigabit Network Basics of	15
	Interconnection Network	
	Network Topologiesand Properties, Buses, Crossbar, and	
	Multistage switches, Gigabit Network Technologies, Comparison of	
	Network Technologies Parallel Programming: Paradigms and	
	Programmability: Algorithmic Paradigms, Programmability issues	
	Parallel Programming Examples; Parallel Programming Models	
	Implicit Parallelism, Explicit Parallel Models, Other Parallel	
	Programming Models ;Shared Memory Programming : The POSIX	
	Threads (P-threads) Model, The Openmp Standard; Message-	
	Passing Programming : The Message Passing Paradigm,	

	Message Passing Interface (MPI), Parallel Virtual Machine (PVM).	
	Data Parallel Programming: The Data Parallel Model, The	
	Fortran 90 Approach, Other Data Parallel Approaches.	
3	Performance Metrics and Benchmarks	15
	Performance Metrics for Parallel Systems, Run Time, Speedup,	
	Efficiency Cost. Scalability and Speedup Analysis: Amdahl's	
	Law: Fixed Problem Size, Gustafson's Law: Fixed Time, Sun and	
	Ni's Law: Memory Bounding, Iso performance Models. System and	
	ApplicationBenchmarks : Micro Benchmarks, Parallel Computing	
	Benchmarks, Business and TPC Benchmarks, SPECBenchmark	
	Family ; Performance v/s Cost, Performance of parallel Computers,	
	Performance of Parallel Programs. Parallel Paradigms and	
	Programming Models: Parallel Programming Models, Implicit	
	Parallelism, Explicit Parallel Models, Other Parallel Programming	
	Models. Shared MemoryProgramming: The POSIX Threads (P-	
	threads) Model, The OpenMP Standard.	
4	Message-Passing Programming	15
	The Message Passing Paradigm, Message Passing Interface	
	(MPI), Parallel Virtual Machine (PVM). Data Parallel Programming:	
	The Data Parallel Model, the FORTRAN 90 Approach, Other Data	
	Parallel Approaches Parallel Algorithms and Applications Sorting	
	Algorithms, Searching Algorithms, Dynamic Programming, Matrix	
	Multiplication, Dense Matrix Computations, Sparse Matrix	
	Computations.	
5	Assignment	15
	Total	75
Reading List

- 1. Hwang Kai and ZhiweiXu (1997), "Scalable Parallel Computing", McGraw Hill New York.
- 2. Wilkinson Barry and Allen Michael (1999), "Parallel Programming", Pearson Education Asia.
- 3. Brawer Steven, "Introduction to Parallel Programming"
- 4. Shasikumar M., Shikhare Dinesh and Prakash P. Ravi, "Introduction to Parallel Processing".
- 5. Rajaraman V. and Murthy C. Siva Ram, "Parallel Computers-Architecture and Programming"

Semester – III

Course Name: Elective 4 (Option 2: Wireless Network)

Course Objectives:

- Learn about IEEE 802.11, various communication techniques, the wireless networking architecture and infrastructure
- Know about Ad Hoc networking, design issues, goals and classification related to medium access protocols
- Know the functionalities of various routing protocols
- Uses and working of various sensors in wireless environment

Course Outcomes:

After completion of the course, the students will be able to:

- **CO1**: Understand fundamental underlying principles of wireless computer networking.
- **CO2**: Describe and analyze the hardware, software, components of a wireless network and their interrelations.
- **CO3**: Analyze the requirements for a given organizational structure and select the most appropriate architecture and technologies;
- CO4: Gain a basic knowledge of the use of cryptography and network security
- CO5: Install and configure wireless applications.

	MCA DSE3T4-3 :Wireless Network		
PWC (5 credits – 4 theory + 1 Assignment)			
Unit	Topics to be covered	No. of	
		Hours	
1	Introduction : Issues in mobile computing, overview of wireless telephony: cellular concept, GSM, channel structure, location management: HLR-VLR, hierarchical, handoffs, channel allocation in cellular systems, CDMA, GPRS. Wireless Networking, Wireless LAN Overview: MAC issues, IEEE 802.11, BlueTooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, data broadcasting, Mobile IP, WAP: Architecture, protocol stack, application environment,	15	
	applications. Data management issues, data replication for mobile computers, adaptive clustering for mobile wireless networks.		
2	Introduction to Adhoc networks definition, characteristics features, applications. Characteristics of Wireless channel, Ad Hoc Mobility Models:- Indoor and outdoor models. MEDIUM ACCESS PROTOCOLS MAC Protocols: design issues, goals and classification. Contention based protocols-with reservation, scheduling algorithms, protocols using directional antennas. IEEE standards: 802.11a, 802.11b, 802.11g, 802.15. HIPERLAN. NETWORK PROTOCOLS Routing Protocols: Design issues, goals and classification.	15	
3	Routing: ProactiveVs reactive routing, Unicast routing algorithms, Multicast routing algorithms, hybrid routing algorithm, Energy aware routing algorithm, Hierarchical Routing, QoS aware	15	

rout	ing. END-END DELIVERY AND SECURITY Transport layer:	
ไรรเ	ies in designing- Transport layer classification, adhoc	
trar	sport protocols. Security issues in adhoc networks: issues	
and	challenges, network security attacks, secure routing	
prot	ocols. Cross Layer Design and Integration of Ad Hoc for 4g	
Cro	ss Layer Design: Need for cross layer design, cross layer	
opti	mization, parameter optimization techniques, Cross layer	
cau	tionary perspective.	
4 Intr	oduction to sensor networks and its applications	15
Arc	nitecture and factors influencing the sensor network design.	
Rou	iting protocols- data centric routing protocols, hierarchical	
rout	ing protocols, location based routing, energy efficient routing	
etc,	Node Scheduling and coverage issues, topology control.	
Que	erying, data collection and processing, Collaborative	
info	rmation processing and group connectivity. Target tracking	
and	identity management using sensor networks .Localization.	
Арр	lication & future research Challenges.	
5 As s	ignment	15
Tot	al	75

Reading List:

- 1. Adelstein Frank, Gupta S.K.S., Richard III Golden G. and Schwiebert Loren, "Fundamentals of Mobile and Pervasive Computing", McGraw-Hill Professional.
- 2. Taniar David, "Mobile Computing: Concepts, Methodologies, Tools, and Applications".
- 3. Toh C.K., Ad-Hoc Mobile Wireless Networks Protocols and Systems, Prentice Hall.
- 4. Stojmenovic and Cacute, Handbook of Wireless Networks and Mobile Computing, Wiley.

<u>Semester – III</u>

Course Code: MCA DSE3T4

Course Name: Elective 4 (Option 3: Big Data Analytics)

Course Objectives:

- To introduce students to the various concepts of big data analytics, and the seven Vs. of big data—Volume, Velocity, Veracity, Variety, Value, Vision, and Visualization.
- To Explore big data concepts, platforms, analytics, and their applications using the power of Hadoop
- Provide HDFS Concepts and Interfacing with HDFS.
- Apply analytics on Structured, Unstructured Data.

Course Outcomes:

After completion of the course, the students will be able to:

- CO1: Describe the characteristics of Big Data
- **CO2:** Describe the basics of Hadoop and HDFS architecture.
- CO3: Deploy Job Execution in Hadoop Environment
- CO4: Develop Big Data Solutions using Hadoop EcoSystem
- **CO5**: Analyze Infosphere BigInsights Big Data Recommendations.
- **CO6**: Deploy Machine Learning Techniques using R.

MCA [MCA DSE3T4-2 :Big Data Analytics			
PWC (5 credits – 4 theory + 1 Assignment)				
Unit	Topics to be covered	No. of		
		Hours		
1	INTRODUCTION TO BIG DATA AND HADOOP : Types of	15		
	Digital Data, Introduction to Big Data, Big Data Analytics, History			
	of Hadoop, Apache Hadoop, Analyzing Data with Unix tools,			
	Analyzing Data with Hadoop, IBM Big Data Strategy, Introduction			
	to NoSQL. Introduction to Infosphere BigInsights and Big Sheets			
2	HDFS(Hadoop Distributed File System) : The Design of HDFS,	15		
	HDFS Concepts, Command Line Interface, Hadoop file system			
	interfaces, Data flow, Data Ingestion Tools, Data Ingest with			
	Flume			
3	Map Reduce : Anatomy of a Map Reduce Job Run, Failures, Job	15		
	Scheduling, Shuffle and Sort, Task Execution, Map Reduce			
	Types and Formats, Map Reduce Features.			
4	Data Analytics with R: Introduction, Supervised Learning,	15		
	Unsupervised Learning, Collaborative Filtering.			
5	Assignment	15		
	Total	75		

Reading List:

1. Eaton Chris, Deroos Dirk, "Understanding Big data", Tata McGraw Hill.

3. White Tom, (2012) "HADOOP: The definitive Guide", O Reilly Publication.

^{2.} Lublinsky Boris, T. Smith Kevin, Yakubovich Alexey, "*Professional Hadoop Solutions*", Wiley Publication

<u>Semester – III</u>

MCA SE3L05 : MOOCs			
PWC	(2 credits: 2 Practical)		
Unit	Topics to be covered	No. of	
		hours	
	Students can choose any course approved by the	30	
	department from the following portals:		
	1. Spoken Tutorial		
	2. Swayam Portal		
	3. NPTEL		
	Total	30	

Semester – III

MCA SE3L06 : Seminar				
PWC	(2 credits: 2 Practical)			
Unit	Topics to be covered	No. of		
		hours		
	Industry seminars are suggested to enable the students of	30		
	MCA to appreciate the software development which is going			
	on in industries in India. These seminars will help the students			
	to face interviews with some confidence. The students should			
	attend these and submit a report.			
	Total	30		

Semester – IV

MCA CS4P13:Internship PWC (12 credits)

A student has to undertake at least two software development projects/ training work of at least one month duration during 1st, 2nd or 3rd semester.

Semester – IV

<u>MCA CS4P14</u>: OJT Project PWC(24 credits)

OJT Project is of 500 Marks (24 credits) out of which all 24 credits for the development of the project and project report (unguided learning hours). The IV semester, being kept for fulfillment of the academic requirement, is entirely devoted to preparation of a major project report. For this purpose, each candidate shall have to undertake a major project, at least of 4 month durations, in a reputed organization. Project work has to be done individually. However if the project is done in groups, each student must be given a responsibility for a distinct module and care should be taken to see the progress of individual modules is independent of others.